ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
State legislation: Delaware delving into nuclear energy possibilities
A bill that would create a nuclear energy task force in Delaware has passed the state Senate and is now being considered in the House of Representatives.
S. Reyes, J. F. Latkowski, L. C. Cadwallader, R. W. Moir, J. Gómez del Río, J. Sanz
Fusion Science and Technology | Volume 44 | Number 2 | September 2003 | Pages 400-404
Technical Paper | Fusion Energy - Tritium and Safety and Environment | doi.org/10.13182/FST03-A367
Articles are hosted by Taylor and Francis Online.
We have performed a safety assessment of mercury and lead as possible hohlraum materials for Inertial Fusion Energy (IFE) targets, including for the first time a comparative analysis of the radiological and toxicological consequences of an accidental release. In order to calculate accident doses to the public, we have distinguished between accidents at the target fabrication facility and accidents at other areas of the power plant. Regarding the chemical toxicity assessment, we have used the U.S. DOE regulations to determine the maximum allowable release in order to protect the public from adverse health effects. Opposite to common belief, it has been found that the chemical safety requirements for these materials appear to be more stringent than the concentrations that would result in an acceptable radiological dose.