ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
DOE awards $2.7B for HALEU and LEU enrichment
Yesterday, the Department of Energy announced that three enrichment services companies have been awarded task orders worth $900 million each. Those task orders were given to American Centrifuge Operating (a Centrus Energy subsidiary) and General Matter, both of which will develop domestic HALEU enrichment capacity, along with Orano Federal Services, which will build domestic LEU enrichment capacity.
The DOE also announced that it has awarded Global Laser Enrichment an additional $28 million to continue advancing next generation enrichment technology.
S. Reyes, J. F. Latkowski, L. C. Cadwallader, R. W. Moir, J. Gómez del Río, J. Sanz
Fusion Science and Technology | Volume 44 | Number 2 | September 2003 | Pages 400-404
Technical Paper | Fusion Energy - Tritium and Safety and Environment | doi.org/10.13182/FST03-A367
Articles are hosted by Taylor and Francis Online.
We have performed a safety assessment of mercury and lead as possible hohlraum materials for Inertial Fusion Energy (IFE) targets, including for the first time a comparative analysis of the radiological and toxicological consequences of an accidental release. In order to calculate accident doses to the public, we have distinguished between accidents at the target fabrication facility and accidents at other areas of the power plant. Regarding the chemical toxicity assessment, we have used the U.S. DOE regulations to determine the maximum allowable release in order to protect the public from adverse health effects. Opposite to common belief, it has been found that the chemical safety requirements for these materials appear to be more stringent than the concentrations that would result in an acceptable radiological dose.