ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
K. R. Schultz
Fusion Science and Technology | Volume 44 | Number 2 | September 2003 | Pages 393-399
Technical Paper | Fusion Energy - Tritium and Safety and Environment | doi.org/10.13182/FST03-A366
Articles are hosted by Taylor and Francis Online.
Hydrogen has captured the imagination of the technical community recently, with visions of improved energy security, reduced global warming, improved energy efficiency and reduced air pollution as potential benefits. A significant "Hydrogen Economy" is predicted that will reduce dependence on petroleum imports, and reduce pollution and greenhouse gas emissions. Such a hydrogen economy will need significant new sources of hydrogen. Virtually all our current hydrogen is produced from natural gas and is equivalent to 48 GW(t). Replacing this growing demand with a non-fossil, non-greenhouse gas emitting source represents a huge potential market for fusion.Hydrogen could potentially be produced from water using fusion energy by direct interaction of fusion products (charged particles, neutrons and gammas), and by electrolytic or thermochemical means. Significant effort was devoted to study of these possibilities in the 1970-80s. It is instructive to review these earlier studies today as interest in production of hydrogen is revived. Investigations into direct use of fusion products for radiolysis and "hot spot" chemistry found it was difficult to get much of the fusion energy into the reaction channels of interest. Use of fusion energy in heat-driven processes was more promising. Fusion blankets could give much higher temperatures than are possible from fission heat sources. Studies of high temperature electrolysis and thermochemical water splitting using this high temperature heat were promising. The requirement that fusion blankets breed tritium raises challenges, as the tolerance for tritium in the product hydrogen is extraordinarily low. Use of multiple coolant streams, multiple containment barriers and separate breeding and high temperature zones were proposed that appear to successfully address these concerns, but add complication. Fusion does have the potential to support the Hydrogen Economy as well as electricity production as long as care is given to maximizing the benefits and minimizing the liabilities inherent to fusion energy.