ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Zongwei Wang, Dangzhong Gao, Xiaojun Ma, Jie Meng
Fusion Science and Technology | Volume 66 | Number 3 | November 2014 | Pages 432-437
Technical Paper | doi.org/10.13182/FST14-808
Articles are hosted by Taylor and Francis Online.
A new technique based on a vertical scanning white-light interferometry is developed for measuring fuel pressure in inertial confinement fusion (ICF) multiple-shell polymer-microsphere targets. Nuclear fuel pressure is an essential parameter for estimating fusion efficiency in ICF experiments. This parameter is difficult to determine because of complicated target structures, short measurement time, relatively short optical path length changes, and expansion of the target after pressurization. To reduce the effects due to changes in diameter, a model is proposed to correct for the expansion at the radial orientation for multiple-shell polymer microspheres. The model is compared to a destructive method, and D2 fill pressure accuracy is confirmed within a 10% error of uncertainty.