ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
P. M. Prajapati, Bhawna Pandey, C. V. S. Rao, S. Jakhar, T. K. Basu, B. K. Nayak, S. V. Suryanarayana, A. Saxena
Fusion Science and Technology | Volume 66 | Number 3 | November 2014 | Pages 426-431
Technical Paper | doi.org/10.13182/FST14-804
Articles are hosted by Taylor and Francis Online.
The current state of nuclear data evaluations requires improvement for fusion applications. In this context, the excitation function of the 56Fe(n,α)53Cr reaction from threshold to 20 MeV has been calculated using the Hauser-Feshbach statistical model with preequilibrium effects by the TALYS-1.4 code. Different types of nuclear level density models have been used in the calculation. The present calculations are compared with existing experimental data as well as with latest available evaluated nuclear data libraries ENDF/B-VII.1, JEFF-3.2, and JENDL-4.0. Good agreement between the calculated and the experimental data validates the nuclear model approaches with increased predictive power to supplement and extend the nuclear database. The present calculations have also been compared with the (n,α) reaction cross-section systematics at 14.5-MeV neutron energy.