ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Uranium prices rise to highest level in more than two months
Analyst firm Trading Economics posted a uranium futures value of about $82.00 per pound on January 5—the highest futures value in more than two months.
In late October, it had listed a futures price of about $82.30/lb. By late November, the price had fallen to under $76.00/lb.
Adrian S. Sabau, Evan K. Ohriner, Jim Kiggans, Charles R. Schaich, Yoshio Ueda, David C. Harper, Yutai Katoh, Lance L. Snead
Fusion Science and Technology | Volume 66 | Number 3 | November 2014 | Pages 394-404
Technical Paper | doi.org/10.13182/FST14-809
Articles are hosted by Taylor and Francis Online.
Testing of advanced materials and component mock-ups under prototypical fusion high-heat-flux conditions, while historically a mainstay of fusion research, has proved challenging, especially for irradiated materials. A new high-heat-flux–testing (HHFT) facility based on water-wall plasma arc lamps (PALs) is now introduced for materials and small-component testing. Two PAL systems, utilizing a 12 000°C plasma arc contained in a quartz tube cooled by a spiral water flow over the inside tube surface, provide maximum incident heat fluxes of 4.2 and 27 MW/m2 over areas of 9×12 and 1×10 cm2, respectively. This paper will present the overall design and implementation of a PAL-based irradiated material target station (IMTS). The IMTS is primarily designed for testing the effects of heat flux or thermal cycling on material coupons of interest, such as those for plasma-facing components. Temperature results are shown for thermal cycling under HHFT of tungsten coupon specimens that were neutron irradiated in HFIR. Radiological surveys indicated minimal contamination of the 36-× 36-× 18-cm test section, demonstrating the capability of the new facility to handle irradiated specimens at high temperature.