ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Glen R. Longhurst, Alex Kratville
Fusion Science and Technology | Volume 66 | Number 3 | November 2014 | Pages 385-393
Technical Paper | doi.org/10.13182/FST14-801
Articles are hosted by Taylor and Francis Online.
A simple laboratory experiment was constructed to demonstrate in a classroom setting hydrogen permeation under conditions typical of some nuclear applications. The goal was to allow students to find both solubility and diffusivity parameters for hydrogen moving through commercial stainless steel tubing. The purpose of the present work is to compare test results from this laboratory experiment with results from others to validate the experiment. Hydrogen mixed with argon was admitted to a heated test chamber containing a coiled Type 316 stainless steel tube. Pure argon sweep gas was passed through the tube to a process-gas mass spectrometer where composition transients of pertinent gas species were recorded. Fits of a theoretical transient model to the experimental data gave values of both diffusivity and solubility of hydrogen in the stainless steel tube. Tests were conducted at hydrogen partial pressures ranging from 1.7 to 83 kPa and tube temperatures from 636 to 770 K. The form of the permeation transient data was fit well by a classical theoretical model. Observed values of diffusivity and solubility of hydrogen in the stainless steel from these transients were similar to literature values with some notable differences. Evidence of permeation delay due to interference by the diluting Ar was observed. Limitations of the experimental system are discussed.