ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Fermilab center renamed after late particle physicist Helen Edwards
Fermi National Accelerator Laboratory’s Integrated Engineering Research Center, which officially opened in January 2024, is now known as the Helen Edwards Engineering Center. The name was changed to honor the late particle physicist who led the design, construction, commissioning, and operation of the lab’s Tevatron accelerator and was part of the Water Resources Development Act signed by President Biden in December 2024, according to a Fermilab press release.
S. A. Cherenshchykov
Fusion Science and Technology | Volume 66 | Number 2 | October 2014 | Pages 358-367
Technical Note | doi.org/10.13182/FST13-720
Articles are hosted by Taylor and Francis Online.
The injection of a nonrelativistic electron beam into a toroidal solenoid is considered. A secondary emission magnetron injection gun is proposed as a source of the electron beam. Using the drift approximation, a step value after the first turn of the beam around the solenoid is calculated. For multiturn injection, the beam must not return to the electron gun. Thus, the step value must be large enough by comparison with the gun dimension. Using this condition and the Hull cutoff magnetic field equation, the maximum electrode diameters of the magnetron injection gun are calculated. The maximum gun perveance is calculated using scale theory and experimental data from other authors. Because of the small dimensions of the gun, a concept for a multibeam gun is proposed. As an example, the total current and total power are calculated for two values of the electron beam energy and three operational facilities. In comparison with existing sources for auxiliary plasma heating, a novel approach can provide higher power. The calculated levels of the electric field strength in the gun are several times lower than those achieved in experiments. Prospects for the novel concept for plasma heating and current drive and the problem of gun cooling are discussed. Other possible applications are discussed too.