ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
S. A. Cherenshchykov
Fusion Science and Technology | Volume 66 | Number 2 | October 2014 | Pages 358-367
Technical Note | doi.org/10.13182/FST13-720
Articles are hosted by Taylor and Francis Online.
The injection of a nonrelativistic electron beam into a toroidal solenoid is considered. A secondary emission magnetron injection gun is proposed as a source of the electron beam. Using the drift approximation, a step value after the first turn of the beam around the solenoid is calculated. For multiturn injection, the beam must not return to the electron gun. Thus, the step value must be large enough by comparison with the gun dimension. Using this condition and the Hull cutoff magnetic field equation, the maximum electrode diameters of the magnetron injection gun are calculated. The maximum gun perveance is calculated using scale theory and experimental data from other authors. Because of the small dimensions of the gun, a concept for a multibeam gun is proposed. As an example, the total current and total power are calculated for two values of the electron beam energy and three operational facilities. In comparison with existing sources for auxiliary plasma heating, a novel approach can provide higher power. The calculated levels of the electric field strength in the gun are several times lower than those achieved in experiments. Prospects for the novel concept for plasma heating and current drive and the problem of gun cooling are discussed. Other possible applications are discussed too.