ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
D. H. Zhu, J. L. Chen, Z. J. Zhou, R. Yan, R. Ding
Fusion Science and Technology | Volume 66 | Number 2 | October 2014 | Pages 337-342
Technical Paper | doi.org/10.13182/FST13-738
Articles are hosted by Taylor and Francis Online.
To investigate the influences of dispersed lanthanum oxide (La2O3) additive on the properties of a tungsten (W)-based plasma-facing material, ultrafine-grained W-1% La2O3 composite has been successfully fabricated using the resistance sintering under ultrahigh pressure method, which can suppress W grain growth during sintering processes. Its relative density, Vickers microhardness, microstructure, and thermal conductivity have been analyzed and compared with those of pure W. Moreover, its behaviors under fusion-related conditions, i.e., edge plasma loading in the HT-7 tokamak and transient heat flux simulated by a high-intensity pulsed ion beam, have been evaluated. It is shown that without the fine-grain strengthening effect of dispersed particles, the La2O3 additive as second-phase particles being dispersed in W-based plasma-facing material degrades the material resistance ability under plasma heat loading.