ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Disa seeks NRC license for its uranium mine waste remediation tech
The Nuclear Regulatory Commission has received a license application from Disa Technologies to use high-pressure slurry ablation (HPSA) technology for remediating abandoned uranium mine waste at inactive mining sites. Disa’s headquartersin are Casper, Wyo.
D. H. Zhu, J. L. Chen, Z. J. Zhou, R. Yan, R. Ding
Fusion Science and Technology | Volume 66 | Number 2 | October 2014 | Pages 337-342
Technical Paper | doi.org/10.13182/FST13-738
Articles are hosted by Taylor and Francis Online.
To investigate the influences of dispersed lanthanum oxide (La2O3) additive on the properties of a tungsten (W)-based plasma-facing material, ultrafine-grained W-1% La2O3 composite has been successfully fabricated using the resistance sintering under ultrahigh pressure method, which can suppress W grain growth during sintering processes. Its relative density, Vickers microhardness, microstructure, and thermal conductivity have been analyzed and compared with those of pure W. Moreover, its behaviors under fusion-related conditions, i.e., edge plasma loading in the HT-7 tokamak and transient heat flux simulated by a high-intensity pulsed ion beam, have been evaluated. It is shown that without the fine-grain strengthening effect of dispersed particles, the La2O3 additive as second-phase particles being dispersed in W-based plasma-facing material degrades the material resistance ability under plasma heat loading.