ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
NN Asks: What did you learn from ANS’s Nuclear 101?
Mike Harkin
When ANS first announced its new Nuclear 101 certificate course, I was excited. This felt like a course tailor-made for me, a transplant into the commercial nuclear world. I enrolled for the inaugural session held in November 2024, knowing it was going to be hard (this is nuclear power, of course)—but I had been working on ramping up my knowledge base for the past year, through both my employer and at a local college.
The course was a fast-and-furious roller-coaster ride through all the key components of the nuclear power industry, in one highly challenging week. In fact, the challenges the students experienced caught even the instructors by surprise. Thankfully, the shared intellectual stretch we students all felt helped us band together to push through to the end.
We were all impressed with the quality of the instructors, who are some of the top experts in the field. We appreciated not only their knowledge base but their support whenever someone struggled to understand a concept.
Widodo Widjaja Basuki, Prachai Norajitra, Luigi Spatafora, Jarir Aktaa
Fusion Science and Technology | Volume 66 | Number 2 | October 2014 | Pages 315-321
Technical Paper | doi.org/10.13182/FST13-773
Articles are hosted by Taylor and Francis Online.
The design of fusion plasma-facing components is challenging, as their materials have to meet rigorous requirements in terms of low activation and high-temperature strength. At the same time, sufficient ductility is required even in the low-temperature range. Unfortunately, these properties are not found in conventional materials. To solve this problem, a hybrid material that combines the high strength of one material with the high ductility of the other material was developed. This paper presents the hybrid material, which consists of thin tungsten and vanadium layers. This hybrid material was produced by means of diffusion bonding at relatively low temperature in a vacuum chamber. Microstructural investigations and nanoindentation tests indicated no cracks, no delamination, and no brittle intermetallic phases along the bond interfaces. Investigations of the mechanical properties of the hybrid material by instrumented Charpy impact tests revealed a relatively low ductile-to-brittle transition temperature (DBTT) at 124°C (compared to the DBTT of polycrystalline tungsten of >441°C) with an absorbed Charpy impact energy of 4.53 J [kleinst (KLST)-specimen]. Additionally, the tested Charpy impact specimens were found to be not fractured thoroughly even at room temperature.