ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Widodo Widjaja Basuki, Prachai Norajitra, Luigi Spatafora, Jarir Aktaa
Fusion Science and Technology | Volume 66 | Number 2 | October 2014 | Pages 315-321
Technical Paper | doi.org/10.13182/FST13-773
Articles are hosted by Taylor and Francis Online.
The design of fusion plasma-facing components is challenging, as their materials have to meet rigorous requirements in terms of low activation and high-temperature strength. At the same time, sufficient ductility is required even in the low-temperature range. Unfortunately, these properties are not found in conventional materials. To solve this problem, a hybrid material that combines the high strength of one material with the high ductility of the other material was developed. This paper presents the hybrid material, which consists of thin tungsten and vanadium layers. This hybrid material was produced by means of diffusion bonding at relatively low temperature in a vacuum chamber. Microstructural investigations and nanoindentation tests indicated no cracks, no delamination, and no brittle intermetallic phases along the bond interfaces. Investigations of the mechanical properties of the hybrid material by instrumented Charpy impact tests revealed a relatively low ductile-to-brittle transition temperature (DBTT) at 124°C (compared to the DBTT of polycrystalline tungsten of >441°C) with an absorbed Charpy impact energy of 4.53 J [kleinst (KLST)-specimen]. Additionally, the tested Charpy impact specimens were found to be not fractured thoroughly even at room temperature.