ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Widodo Widjaja Basuki, Prachai Norajitra, Luigi Spatafora, Jarir Aktaa
Fusion Science and Technology | Volume 66 | Number 2 | October 2014 | Pages 315-321
Technical Paper | doi.org/10.13182/FST13-773
Articles are hosted by Taylor and Francis Online.
The design of fusion plasma-facing components is challenging, as their materials have to meet rigorous requirements in terms of low activation and high-temperature strength. At the same time, sufficient ductility is required even in the low-temperature range. Unfortunately, these properties are not found in conventional materials. To solve this problem, a hybrid material that combines the high strength of one material with the high ductility of the other material was developed. This paper presents the hybrid material, which consists of thin tungsten and vanadium layers. This hybrid material was produced by means of diffusion bonding at relatively low temperature in a vacuum chamber. Microstructural investigations and nanoindentation tests indicated no cracks, no delamination, and no brittle intermetallic phases along the bond interfaces. Investigations of the mechanical properties of the hybrid material by instrumented Charpy impact tests revealed a relatively low ductile-to-brittle transition temperature (DBTT) at 124°C (compared to the DBTT of polycrystalline tungsten of >441°C) with an absorbed Charpy impact energy of 4.53 J [kleinst (KLST)-specimen]. Additionally, the tested Charpy impact specimens were found to be not fractured thoroughly even at room temperature.