ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Widodo Widjaja Basuki, Prachai Norajitra, Luigi Spatafora, Jarir Aktaa
Fusion Science and Technology | Volume 66 | Number 2 | October 2014 | Pages 315-321
Technical Paper | doi.org/10.13182/FST13-773
Articles are hosted by Taylor and Francis Online.
The design of fusion plasma-facing components is challenging, as their materials have to meet rigorous requirements in terms of low activation and high-temperature strength. At the same time, sufficient ductility is required even in the low-temperature range. Unfortunately, these properties are not found in conventional materials. To solve this problem, a hybrid material that combines the high strength of one material with the high ductility of the other material was developed. This paper presents the hybrid material, which consists of thin tungsten and vanadium layers. This hybrid material was produced by means of diffusion bonding at relatively low temperature in a vacuum chamber. Microstructural investigations and nanoindentation tests indicated no cracks, no delamination, and no brittle intermetallic phases along the bond interfaces. Investigations of the mechanical properties of the hybrid material by instrumented Charpy impact tests revealed a relatively low ductile-to-brittle transition temperature (DBTT) at 124°C (compared to the DBTT of polycrystalline tungsten of >441°C) with an absorbed Charpy impact energy of 4.53 J [kleinst (KLST)-specimen]. Additionally, the tested Charpy impact specimens were found to be not fractured thoroughly even at room temperature.