ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
M. Wisse, L. Marot, R. Steiner, D. Mathys, A. Stumpp, M. Joanny, J. M. Travère, E. Meyer
Fusion Science and Technology | Volume 66 | Number 2 | October 2014 | Pages 308-314
Technical Paper | doi.org/10.13182/FST13-771
Articles are hosted by Taylor and Francis Online.
In order to extend the investigation of laser-assisted cleaning of ITER-relevant first mirror materials to the picosecond regime, a commercial laser system delivering 10-ps pulses at 355 nm at a frequency of up to 1 MHz has been used to investigate the ablation of mixed aluminum (oxide)/tungsten (oxide) layers deposited on polycrystalline and nanocrystalline molybdenum as well as nanocrystalline rhodium mirrors. Characterization before and after cleaning using scanning electron microscopy and spectrophotometry shows heavy dust formation, resulting in a degradation of the reflectivity. Cleaning using 5-ns pulses at 350 and 532 nm, on the other hand, proved very promising. The structure of the film remnants suggests that in this case buckling was the underlying removal mechanism rather than ablation. Repeated coating and cleaning using nanosecond pulses is demonstrated.