ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
S.N. Korshunov, V.I. Vasiliev, M.I. Guseva, V.M. Gureev, L.S. Danelyan, V.V. Zatekin, V.S. Kulikauskas
Fusion Science and Technology | Volume 38 | Number 3 | November 2000 | Pages 357-362
Technical Paper | Special Issue on Beryllium Technology for Fusion | doi.org/10.13182/FST00-A36150
Articles are hosted by Taylor and Francis Online.
The mixed W-Be layers were prepared by deposition of Be and W atoms on a Be substrate under simultaneous sputtering of Be and W targets by 20 keV Ar+-ions. The thickness of the deposited mixed W-Be layer was ∼500 nm. The element composition analysis of these layers showed that the mixed layer contains up to 35 at.% W, up to 35 at.% Be and up to 30 at.% O. The W-Be films on Be were irradiated by pulsed deuterium plasma flux in the electrodynamic plasma MKT-accelerator with a deuterium plasma concentration of 1021 m−3, maximal ion energy of (1–2) keV and with the energy flux density of 0.2 MJ/m2 per pulse. The pulse duration was equal to 60 μs. After irradiation by two plasma pulses the W-Be film is melted and removed completely from the local surface areas. The element distributions in a mixed layer after an effect of the pulsed plasma are essentially changed. For the surface areas with the removed film the Be concentration is about 75 at.%, W — about 15 at.%, O - about 10 at.% and the penetration of W and O atoms is up to 1000 nm deep of Be substrate. For the surface areas with the retained melted film the Be surface concentration increase up to 90 at.%, tungsten and oxygen concentration decrease about 2–3 times. The method of Elastic Recoil Detection Analysis was used to study D retention. The integral deuterium concentrations are equal to 0.6·1020 and 2.2·1020 m−2 for the removed film areas and for the retained melted film ones, correspondingly. Consequently, deposited W-Be film promotes the essential reduction of D retention in Be substrate. Transmission electron microscopy was used to study the erosion product size distribution. The erosion products were collected on basalt filter fibers located in a shadow of the pulsed plasma flux around the exposed WBe film target. The erosion product size distribution has two maxima located in the ranges 0.1–0.2 μm and 2.5–5.0 μm.