ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
A. Lodato, M. Rödig, R. Duwe, H. Derz, J. Linke, R. Castro, A. Gervash
Fusion Science and Technology | Volume 38 | Number 3 | November 2000 | Pages 334-337
Technical Paper | Special Issue on Beryllium Technology for Fusion | doi.org/10.13182/FST00-A36147
Articles are hosted by Taylor and Francis Online.
Beside carbon materials and tungsten, beryllium will play an important role as plasma facing material (PFM) in the International Thermonuclear Experimental Reactor (ITER). It will mainly be used for the primary wall, the limiter and the upper baffle. During off normal operation the surface of Be may be loaded by severe thermal shocks, caused by plasma disruptions with energies of several ten MJ/m2 within tens of milliseconds. The influence of high heat fluxes on several un-irradiated Be grade have been investigated before. During the operation of ITER the material will suffer irradiation with 14 MeV neutrons generated in the fusion process. In order to study the material degradation caused by fast neutrons, different samples have been neutron irradiated in the High Flux Reactor (HFR) at Petten. The thermal shock behaviour of the different beryllium grade before and after neutron irradiation is now compared.