ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
U.K., Japan to extend decommissioning partnership
The U.K.’s Sellafield Ltd. and Japan’s Tokyo Electric Power Company have pledge to continue to work together for up to an additional 10 years, extending a cooperative agreement begun in 2014 following the 2011 tsunami that resulted in the irreparable damage of TEPCO’s Fukushima Daiichi plant.
E. Alves, L.C. Alves, M.F da Silva, A.A. Melo, J.C. Soares, F. Scaffidi-Argentina
Fusion Science and Technology | Volume 38 | Number 3 | November 2000 | Pages 320-325
Technical Paper | Special Issue on Beryllium Technology for Fusion | doi.org/10.13182/FST00-A36145
Articles are hosted by Taylor and Francis Online.
The electrical resistivity behaviour of a beryllium pebble bed has been studied as a function of the temperature and pressure. At room temperature the resistivity of a single size 2 mm pebble bed decreases drastically from 2·10−2 Ωm to 10−4Ωm by applying an external pressure. After this first drop, the resistivity shows an almost linear decrease with the applied pressure. The same trend appears for a single size 0.1–0.2 mm pebble bed, but the resistivity values are about one order of magnitude higher than in the case of the 2 mm pebbles. At room temperature, the lowest resistivity values were found for the case of a binary pebble bed. After a mechanical cycling the electrical resistivity of the bed never reaches its initial value for zero pressure but it remains about one order of magnitude below the original value. After the first loading cycle the following loading/unloading resistivity curves do not show any significant change. The temperature dependence of the mixed pebble bed was investigated in air at 300 °C, 450 °C and 550 °C. The resistivity behaviour of the pebble bed with the applied pressure is, at high temperature, qualitatively the same as that observed at room temperature. For the same applied load the pebble bed electrical resistivity increases almost linearly with the temperature. Measurements of the oxyde content of the pebbles before and after the heating show a higher beryllium oxide content for the heated pebbles than for the not heated ones.