ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
M. Dalle Donne, A. Goraieb, G. Piazza, F. Scaffidi-Argentina
Fusion Science and Technology | Volume 38 | Number 3 | November 2000 | Pages 310-319
Technical Paper | Special Issue on Beryllium Technology for Fusion | doi.org/10.13182/FST00-A36144
Articles are hosted by Taylor and Francis Online.
For the next generation fusion reactors with a ceramic breeder blanket the use, as a neutron multiplier, of either a binary bed of large (≈ 2 mm) and small (≈ 0.1–0.2 mm) beryllium pebbles or a single size bed made of 1 mm or 2 mm pebbles is foreseen. The heat transfer parameters of such a binary pebble bed, namely the thermal conductivity and the heat transfer coefficient to the containing wall, have been investigated previously in the experimental device PEHTRA available at FZK. The experiments allowed to measure the effect of the bed temperature and of constraint exerted by the containing walls. The constraint is defined by the bed interference, i.e. the difference in the radial expansion between bed and the constraining walls related to the bed thickness (Δℓ/ℓ). However, with the PEHTRA experiments, it was only possible to achieve a Δℓ/ℓ value of 0.1 % .1 A new experimental rig (SUPER-PEHTRA) has been constructed at FZK, which allows to achieve Δℓ/ℓ values of 0.3 % and to measure the pressure of the expanding bed on the containing walls. First experiments with a binary bed have been performed.2 The present paper reports on further experiments with binary beds and the establishing of equations correlating the data obtained for the present binary beds and for the binary bed experiments described in Ref. [2].