ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
M. Dalle Donne, A. Goraieb, G. Piazza, F. Scaffidi-Argentina
Fusion Science and Technology | Volume 38 | Number 3 | November 2000 | Pages 310-319
Technical Paper | Special Issue on Beryllium Technology for Fusion | doi.org/10.13182/FST00-A36144
Articles are hosted by Taylor and Francis Online.
For the next generation fusion reactors with a ceramic breeder blanket the use, as a neutron multiplier, of either a binary bed of large (≈ 2 mm) and small (≈ 0.1–0.2 mm) beryllium pebbles or a single size bed made of 1 mm or 2 mm pebbles is foreseen. The heat transfer parameters of such a binary pebble bed, namely the thermal conductivity and the heat transfer coefficient to the containing wall, have been investigated previously in the experimental device PEHTRA available at FZK. The experiments allowed to measure the effect of the bed temperature and of constraint exerted by the containing walls. The constraint is defined by the bed interference, i.e. the difference in the radial expansion between bed and the constraining walls related to the bed thickness (Δℓ/ℓ). However, with the PEHTRA experiments, it was only possible to achieve a Δℓ/ℓ value of 0.1 % .1 A new experimental rig (SUPER-PEHTRA) has been constructed at FZK, which allows to achieve Δℓ/ℓ values of 0.3 % and to measure the pressure of the expanding bed on the containing walls. First experiments with a binary bed have been performed.2 The present paper reports on further experiments with binary beds and the establishing of equations correlating the data obtained for the present binary beds and for the binary bed experiments described in Ref. [2].