ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
R. A. Anderl, R. J. Pawelko, G. R. Smolik, F. Scaffidi-Argentina, D. Davydov
Fusion Science and Technology | Volume 38 | Number 3 | November 2000 | Pages 283-289
Technical Paper | Special Issue on Beryllium Technology for Fusion | doi.org/10.13182/FST00-A36141
Articles are hosted by Taylor and Francis Online.
This paper reports the results of chemical reactivity experiments for Be pebbles (2-mm and 0.2-mm diameter) and Be powder (14–31 μm diameter) exposed to steam at elevated temperatures, 350 to 900°C for pebbles and 400 to 500°C for powders. We measured BET specific surface areas of 0.12 m2/g for 2-mm pebbles, 0.24 m2/g for 0.2-mm pebbles and 0.66 to 1.21 m2/g for Be powder samples. These experiments showed a complex reactivity behavior for the material, dependent primarily on the test temperature. Average H2 generation rates for powder samples, based on measured BET surface areas, were in good agreement with previous measurements for fully-dense CPM-Be. Rates for the Be pebbles, based on measured BET surface areas, were systematically lower than the CPM-Be rates, possibly because of different surface and bulk features for the pebbles, especially surface-layer impurities, that contribute to the measured BET surface area and influence the oxidation process at the material surface.