ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
R. A. Anderl, R. J. Pawelko, G. R. Smolik, F. Scaffidi-Argentina, D. Davydov
Fusion Science and Technology | Volume 38 | Number 3 | November 2000 | Pages 283-289
Technical Paper | Special Issue on Beryllium Technology for Fusion | doi.org/10.13182/FST00-A36141
Articles are hosted by Taylor and Francis Online.
This paper reports the results of chemical reactivity experiments for Be pebbles (2-mm and 0.2-mm diameter) and Be powder (14–31 μm diameter) exposed to steam at elevated temperatures, 350 to 900°C for pebbles and 400 to 500°C for powders. We measured BET specific surface areas of 0.12 m2/g for 2-mm pebbles, 0.24 m2/g for 0.2-mm pebbles and 0.66 to 1.21 m2/g for Be powder samples. These experiments showed a complex reactivity behavior for the material, dependent primarily on the test temperature. Average H2 generation rates for powder samples, based on measured BET surface areas, were in good agreement with previous measurements for fully-dense CPM-Be. Rates for the Be pebbles, based on measured BET surface areas, were systematically lower than the CPM-Be rates, possibly because of different surface and bulk features for the pebbles, especially surface-layer impurities, that contribute to the measured BET surface area and influence the oxidation process at the material surface.