ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Argonne investigates industrial SMR applications for postwar Ukraine
Argonne National Laboratory will play a leading role in planning and rebuilding a nuclear-generated clean energy infrastructure for postwar Ukraine as part of the lab’s focus on developing small modular reactor applications to help countries meet energy security goals. The latest plans, described in a November 19 article, were announced on November 16 at COP29 in Baku, Azerbaijan.
D. C. Wilson, P. A. Bradley, S. R. Goldman, N. M. Hoffman, R. W. Margevicius, R. B. Stephens, R.E.Olson
Fusion Science and Technology | Volume 38 | Number 1 | July 2000 | Pages 16-21
Technical Paper | Thirteenth Target Fabrication Specialists’ Meeting | doi.org/10.13182/FST00-A36109
Articles are hosted by Taylor and Francis Online.
Recent beryllium capsule designs have focussed on the lower temperatures and laser powers expected before the NIF laser reaches its full capability, 192 beams, 500TW, and 1.8MJ. First, several new designs are given with peak radiation temperatures for 250 to 280 eV. A 250eV design uses 2% oxygen dopant instead of 0.9% copper. Second, a radiography study of planar joints in S200D beryllium using a Cu, Au, Ag, Al, or Au/Cu braze quantified the diffusion away from the joint. LASNEX calculations show that Cu joint perturbations grow to large enough amplitude to preclude ignition. However by allowing the copper to diffuse twice as far as in these experiments (e.g. by holding at braze temperature longer), the joint calculates to be acceptable, and the capsule gives full yield. Aluminum diffuses extremely far from the joint, almost uniformly in the sample. Third, a capsule with a high Z shell and beryllium ablator calculates to ignite. As expected its ignition threshold is lower, about 70% of the implosion velocity for a capsule like the Be330. The extra tamping of DT bum by a 6 μm tungsten shell increases the yield from 17 to 32 MJ. The capsule radiates 3 MJ of this yield as X-rays. Unfortunately the capsule is more sensitive to DT ice roughness than the Be330 design, failing at 0.6μm roughness.