ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
James K. Hoffer
Fusion Science and Technology | Volume 38 | Number 1 | July 2000 | Pages 1-5
Technical Paper | Thirteenth Target Fabrication Specialists’ Meeting | doi.org/10.13182/FST00-A36106
Articles are hosted by Taylor and Francis Online.
The first observation of the beta-layering phenomenon showed that it was possible to fabricate inertial confinement fusion (ICF) targets having an outer ablating shell surrounding a symmetric solid layer of DT fusion fuel. The sensitivity of fusion yield to the internal DT ice roughness is a function of many factors, one of which is the relatively low density of solid DT (0.25 g/cm3), leading to a high Atwood number for the ablator/fuel interface. This is one of the issues that has led us to consider other DT-based fuels having higher densities than pure DT but still capable of being automatically redistributed into a uniform layer by beta-layering. The two principle conditions for beta-layering redistribution, self-heating and a moderately high vapor pressure, can be found in only a few other systems. But by concentrating on hydrides of elements in the second row of the periodic chart, we can find materials which should beta-layer and which might be good candidates for fusion fuel. We exclude lithium hydride and beryllium hydride, because these materials are solids at room temperature where an automatic redistribution technique such as beta-layering would not be necessary. Therefore we begin with boron and consider the following materials: