ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
James K. Hoffer
Fusion Science and Technology | Volume 38 | Number 1 | July 2000 | Pages 1-5
Technical Paper | Thirteenth Target Fabrication Specialists’ Meeting | doi.org/10.13182/FST00-A36106
Articles are hosted by Taylor and Francis Online.
The first observation of the beta-layering phenomenon showed that it was possible to fabricate inertial confinement fusion (ICF) targets having an outer ablating shell surrounding a symmetric solid layer of DT fusion fuel. The sensitivity of fusion yield to the internal DT ice roughness is a function of many factors, one of which is the relatively low density of solid DT (0.25 g/cm3), leading to a high Atwood number for the ablator/fuel interface. This is one of the issues that has led us to consider other DT-based fuels having higher densities than pure DT but still capable of being automatically redistributed into a uniform layer by beta-layering. The two principle conditions for beta-layering redistribution, self-heating and a moderately high vapor pressure, can be found in only a few other systems. But by concentrating on hydrides of elements in the second row of the periodic chart, we can find materials which should beta-layer and which might be good candidates for fusion fuel. We exclude lithium hydride and beryllium hydride, because these materials are solids at room temperature where an automatic redistribution technique such as beta-layering would not be necessary. Therefore we begin with boron and consider the following materials: