ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
M. E. Sawan
Fusion Science and Technology | Volume 66 | Number 1 | July-August 2014 | Pages 272-277
Technical Paper | doi.org/10.13182/FST13-717
Articles are hosted by Taylor and Francis Online.
The amount and type of gaseous and metallic transmutants produced in tungsten (W) when used as a plasma-facing armor in magnetic (MFE) and inertial (IFE) confinement fusion systems were determined and compared to those obtained following irradiation in fission reactors. Up to ∼8% metallic transmutants are generated at the expected lifetime of the fusion blanket. Irradiation in fission reactors to the same fast neutron fluence yields a much larger amount of metallic transmutation products than in fusion systems. While the dominant component in fusion systems is rhenium (Re), osmium (Os) is the main transmutation product in fission reactors. The impact on the W properties needs to be assessed. The results of this work will help guide irradiation experiments in fission reactors to properly simulate the conditions in fusion systems by possible direct implantation of transmutation products in irradiated samples. In addition, the results represent a necessary input for modeling activities aimed at understanding the expected effects on properties.