ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Texas-based WCS chosen to manage U.S.-generated mercury
A five-year, $17.8 million contract has been awarded to Waste Control Specialists for the long-term management and storage of elemental mercury, the Department of Energy’s Office of Environmental Management announced on November 21.
Weiping Shen, Peng Li, Chulei Zhou, Shiliang Xu, Shuming Wang
Fusion Science and Technology | Volume 66 | Number 1 | July-August 2014 | Pages 260-265
Technical Paper | doi.org/10.13182/FST13-726
Articles are hosted by Taylor and Francis Online.
A monoblock mockup for a divertor uses too much tungsten of high gravity. Segmentation of tungsten armor in the monoblock or macrobrush mockups can reduce excess thermal stress caused by the about 3.5 times difference of thermal expansion coefficient between CuCrZr and tungsten, but it is not enough to avoid cracking of the welding interface between tungsten and CuCrZr because of initial semibrittlement and embrittlement of the tungsten armor in service. In this paper, an interlayer of diamond/Cu composite was inserted between tungsten and CuCrZr to reduce the interfacial stress of welded dissimilar materials. Armor of laminated or macrobrush tungsten was designed to decrease the stress concentration of the welding interface. A Cu foil was inserted between the tungsten armor and the diamond/Cu composite to increase welding strength. The plasma-facing mockups made of W-diamond/Cu-CuCrZr or W-diamond/Cu-12Cr RAFM were designed after optimizing by thermal analysis using finite element method and were prepared by a cubic press for producing diamond. The welding properties and microstructures of the dissimilar materials were investigated. Several mockups were connected to prepare a plasma-facing component by penetrating a CuCrZr tube into several CuCrZr heat sinks. The thermal expansion coefficient of the diamond/Cu interlayer is near that of tungsten, and its thermal conductivity is higher than that of CuCrZr. Plastic copper foils can relax thermal stress to avoid cracking in the welding interface. So, this water-cooled plasma-facing component should be better to dissipate the high heat flux of the divertor in fusion reactors.