ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Weiping Shen, Peng Li, Chulei Zhou, Shiliang Xu, Shuming Wang
Fusion Science and Technology | Volume 66 | Number 1 | July-August 2014 | Pages 260-265
Technical Paper | doi.org/10.13182/FST13-726
Articles are hosted by Taylor and Francis Online.
A monoblock mockup for a divertor uses too much tungsten of high gravity. Segmentation of tungsten armor in the monoblock or macrobrush mockups can reduce excess thermal stress caused by the about 3.5 times difference of thermal expansion coefficient between CuCrZr and tungsten, but it is not enough to avoid cracking of the welding interface between tungsten and CuCrZr because of initial semibrittlement and embrittlement of the tungsten armor in service. In this paper, an interlayer of diamond/Cu composite was inserted between tungsten and CuCrZr to reduce the interfacial stress of welded dissimilar materials. Armor of laminated or macrobrush tungsten was designed to decrease the stress concentration of the welding interface. A Cu foil was inserted between the tungsten armor and the diamond/Cu composite to increase welding strength. The plasma-facing mockups made of W-diamond/Cu-CuCrZr or W-diamond/Cu-12Cr RAFM were designed after optimizing by thermal analysis using finite element method and were prepared by a cubic press for producing diamond. The welding properties and microstructures of the dissimilar materials were investigated. Several mockups were connected to prepare a plasma-facing component by penetrating a CuCrZr tube into several CuCrZr heat sinks. The thermal expansion coefficient of the diamond/Cu interlayer is near that of tungsten, and its thermal conductivity is higher than that of CuCrZr. Plastic copper foils can relax thermal stress to avoid cracking in the welding interface. So, this water-cooled plasma-facing component should be better to dissipate the high heat flux of the divertor in fusion reactors.