ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
Jianqi Xi, Peng Zhang, Chaohui He, Mingjie Zheng, Hang Zang, Daxi Guo, Li Ma
Fusion Science and Technology | Volume 66 | Number 1 | July-August 2014 | Pages 235-244
Technical Paper | doi.org/10.13182/FST13-740
Articles are hosted by Taylor and Francis Online.
A molecular dynamics study has been performed to investigate the generation and evolution of damage states in irradiated β-SiC at high temperature. It is found that most of the C antisites (SiC) are created during the early collisional phase, while the Si antisites (CSi) are significantly produced during the thermal spike phase. A modified near-neighbor point defect density (NPDD) is introduced to study the spatial aggregation of different defects during the displacement cascades, and feature of defect clusters evolution is analyzed in details. The dominated types of vacancy clusters after the displacement cascades are two- and three-size chainlike ones. And the vacancy NPDD (V-NPDD) decreases as the recoil energy increases. Furthermore, after the thermal spike phase, there is an additional annealing process during which the interstitials and antisites turn into defect clusters, respectively.