ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
Keitaro Kondo, Ali Abou-Sena, Frederik Arbeiter, Jörg Brand, Ulrich Fischer, Dennis Große, Axel Klix, Lei Lu
Fusion Science and Technology | Volume 66 | Number 1 | July-August 2014 | Pages 228-234
Technical Paper | doi.org/10.13182/FST13-743
Articles are hosted by Taylor and Francis Online.
The International Fusion Materials Irradiation Facility (IFMIF) is an accelerator-based intense neutron source to test fusion reactor materials under irradiation conditions expected to be experienced by a future fusion power plant (DEMO). The Tritium Release Test Module (TRTM) is intended for the irradiation of solid breeder ceramics as well as beryllium involving in-situ tritium release measurements in IFMIF. During the EVEDA (Engineering Validation Engineering Design Activities) phase, a detailed engineering design for the TRTM has been elaborated. A new 3-dimesional Monte Carlo geometry model of TRTM was prepared for a neutronic analysis directly from engineering CAD data using the McCad conversion software developed at KIT. The analysis was performed with the latest version of the Monte Carlo code McDeLicious, an enhancement to MCNP5 for IFMIF neutronics calculations, using a state-of-the-art nuclear data library FENDL-3. The result emphasizes the importance of the neutron reflector which should be placed behind TRTM in order to make the irradiation properties close to the European HCPB DEMO. Although the achievable dpa is lower than that expected in DEMO, the T/dpa and He/dpa values can be simulated very well when the neutron reflector is appropriately designed, in particularly by utilizing beryllium.