ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Texas-based WCS chosen to manage U.S.-generated mercury
A five-year, $17.8 million contract has been awarded to Waste Control Specialists for the long-term management and storage of elemental mercury, the Department of Energy’s Office of Environmental Management announced on November 21.
Y. Hishinuma, T. Tanaka, T. Shinkawa, S. Murakami, K. Matsuda, T. Watanabe, T. Nagasaka, A. Sagara, T. Muroga
Fusion Science and Technology | Volume 66 | Number 1 | July-August 2014 | Pages 221-227
Technical Paper | doi.org/10.13182/FST13-762
Articles are hosted by Taylor and Francis Online.
Erbium oxide (Er2O3) coating layer is one of the suitable coatings to realize an advanced breeding blanket system because it has high electrical resistivity and hydrogen permeation suppression effect. In order to enhance these properties of Er2O3 coating, it is necessary to form a thick coating layer with high crystallinity. The formation of a double stacked coating layer on an austenitic stainless steel 316 substrate using an intermediate layer (buffer layer) was investigated for the thicker and high crystallinity of Er2O3 coating formation. Yttrium oxide (Y2O3) and cerium oxide (CeO2) were selected as buffer layer between the Er2O3 layer and austenitic stainless steel 316 substrate due to their similar lattice constant to that of Er2O3 crystal. The texture and grain growth direction of Er2O3 was controlled by the Y2O3 and CeO2 buffer layer. However, the suppression effect of hydrogen permeation by the double stacked coating was smaller than that of the single layer coating due to the thin Er2O3 formation.