ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Yasunori Iwai, Katsumi Sato, Toshihiko Yamanishi
Fusion Science and Technology | Volume 66 | Number 1 | July-August 2014 | Pages 214-220
Technical Paper | doi.org/10.13182/FST13-725
Articles are hosted by Taylor and Francis Online.
We have developed a honeycomb palladium catalyst to be used for the oxidation of tritiated hydrocarbons. Since the suitable loading rate of palladium deposited on the base material is a technical point, honeycomb-shaped palladium catalysts of three different loading rates—2, 5, and 10 g/L—were prepared to investigate the effect of loading rate of palladium on reaction rate in this study. Tritiated methane was selected as the typical hydrocarbon. A 12 m3 tank was prepared to prevent tritiated methane at tracer concentration fed to the catalytic reactor from fluctuating. The overall reaction rate constant for tritiated methane oxidation on the honeycomb palladium catalyst was determined with a flow-through system as a function of space velocity from 1000 to 6300 h−1, methane concentration in carrier from 0.004 to 100 ppm, and temperature of catalyst from 322 to 673 K. The honeycomb palladium catalyst without pretreatment for activation initially lowers the overall reaction rate constant at lower temperatures. However, the constant recovers steeply to the original value during the continuous combustion of tritiated methane. The loading rate of palladium deposited on the base material has little effect on reaction rate for tritiated methane combustion. The overall reaction rate constant is proportional to the space velocity. The overall reaction rate constant is independent on the methane concentration when it is less than 10 ppm.