ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Blades-in turbine inspections at Quad Cities set new benchmark for Constellation
When Constellation decided to install replacement Alstom low-pressure turbines at three of its boiling water reactor plants more than 15 years ago, one benefit was knowing the new turbines should operate reliably—and without major inspections—for several years.
Kyu In Shin, Jae Sung Yoon, Dong Won Lee, Suk-Kwon Kim, Jin Hyung Gon, Eo Hwak Lee, Seungyon Cho
Fusion Science and Technology | Volume 66 | Number 1 | July-August 2014 | Pages 200-207
Technical Paper | doi.org/10.13182/FST13-752
Articles are hosted by Taylor and Francis Online.
Korea has developed a helium-cooled ceramic reflector (HCCR) test blanket module (TBM) for ITER, and Korean reduced activation ferritic martensitic (RAFM) steel, which is named ARAA (advanced reduced activation alloy), has also been developed for a structural material of the KO HCCR TBM. To evaluate the welding fabrication technology in the TBM, one case of TIG welding conditions was selected based on the previous work by Yoon et al. (2013), and a single pass with one side weld procedure through a thickness in TIG weld was carried out using ARAA, Batch 2 (F206). The microstructure was observed in the base, heat affected zone (HAZ), and weld region, and the micro-hardness was measured from the base to the weld region. In addition, a small punch (SP) test considering the base metal and HAZ region was carried out at room and high (550°C) temperatures. The empirical mechanical properties of the HAZ were estimated based on the correlation between the tensile and SP test in the base metal, and the fracture morphology was observed after the SP test.