ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Fermilab center renamed after late particle physicist Helen Edwards
Fermi National Accelerator Laboratory’s Integrated Engineering Research Center, which officially opened in January 2024, is now known as the Helen Edwards Engineering Center. The name was changed to honor the late particle physicist who led the design, construction, commissioning, and operation of the lab’s Tevatron accelerator and was part of the Water Resources Development Act signed by President Biden in December 2024, according to a Fermilab press release.
Hemant Kumar, K. V. Phani Prabhakar, Shiju Sam, S. K. Albert, G. Padmanabham, A. K. Bhaduri, T. Jayakumar, E. Rajendra Kumar
Fusion Science and Technology | Volume 66 | Number 1 | July-August 2014 | Pages 192-199
Technical Paper | doi.org/10.13182/FST13-747
Articles are hosted by Taylor and Francis Online.
Laser and laser hybrid welding are among the processes chosen for joining Indian reduced activation ferritic martensitic (INRAFM) steel that will be used for fabrication of Indian test blanket modules (TBMs) to be tested in ITER. In the present study, a 3.5 kW slab CO2 laser in autogenous mode and hybridized mode with MIG were successfully employed to make butt joints in plates 6 mm and 12 mm thick respectively. Initially, bead-on-plate (BOP) experiments were conducted to study the effect of various laser and laser hybrid welding parameters such as laser power, welding speed, MIG torch angle, wire feed rate, composition of torch gas, gas shielding arrangement, stand off, distance between arc and laser, and focal position of the laser with respect to the surface. The resultant weld beads were evaluated for weld penetration, width of the weld, and width of the HAZ. Based on BOP welding studies, parameters were chosen for carrying out butt welding experiments using square butt for 6 mm plates and Y-groove edged configurations for 12 mm thick plates with various root face heights and included angles. The radiography results showed that all the welds were acceptable as per ASME Section III. The welds were also evaluated using hardness tests, metallographic analysis, and tensile, bend, and impact tests.