ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Texas-based WCS chosen to manage U.S.-generated mercury
A five-year, $17.8 million contract has been awarded to Waste Control Specialists for the long-term management and storage of elemental mercury, the Department of Energy’s Office of Environmental Management announced on November 21.
Hemant Kumar, K. V. Phani Prabhakar, Shiju Sam, S. K. Albert, G. Padmanabham, A. K. Bhaduri, T. Jayakumar, E. Rajendra Kumar
Fusion Science and Technology | Volume 66 | Number 1 | July-August 2014 | Pages 192-199
Technical Paper | doi.org/10.13182/FST13-747
Articles are hosted by Taylor and Francis Online.
Laser and laser hybrid welding are among the processes chosen for joining Indian reduced activation ferritic martensitic (INRAFM) steel that will be used for fabrication of Indian test blanket modules (TBMs) to be tested in ITER. In the present study, a 3.5 kW slab CO2 laser in autogenous mode and hybridized mode with MIG were successfully employed to make butt joints in plates 6 mm and 12 mm thick respectively. Initially, bead-on-plate (BOP) experiments were conducted to study the effect of various laser and laser hybrid welding parameters such as laser power, welding speed, MIG torch angle, wire feed rate, composition of torch gas, gas shielding arrangement, stand off, distance between arc and laser, and focal position of the laser with respect to the surface. The resultant weld beads were evaluated for weld penetration, width of the weld, and width of the HAZ. Based on BOP welding studies, parameters were chosen for carrying out butt welding experiments using square butt for 6 mm plates and Y-groove edged configurations for 12 mm thick plates with various root face heights and included angles. The radiography results showed that all the welds were acceptable as per ASME Section III. The welds were also evaluated using hardness tests, metallographic analysis, and tensile, bend, and impact tests.