ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
Hemant Kumar, K. V. Phani Prabhakar, Shiju Sam, S. K. Albert, G. Padmanabham, A. K. Bhaduri, T. Jayakumar, E. Rajendra Kumar
Fusion Science and Technology | Volume 66 | Number 1 | July-August 2014 | Pages 192-199
Technical Paper | doi.org/10.13182/FST13-747
Articles are hosted by Taylor and Francis Online.
Laser and laser hybrid welding are among the processes chosen for joining Indian reduced activation ferritic martensitic (INRAFM) steel that will be used for fabrication of Indian test blanket modules (TBMs) to be tested in ITER. In the present study, a 3.5 kW slab CO2 laser in autogenous mode and hybridized mode with MIG were successfully employed to make butt joints in plates 6 mm and 12 mm thick respectively. Initially, bead-on-plate (BOP) experiments were conducted to study the effect of various laser and laser hybrid welding parameters such as laser power, welding speed, MIG torch angle, wire feed rate, composition of torch gas, gas shielding arrangement, stand off, distance between arc and laser, and focal position of the laser with respect to the surface. The resultant weld beads were evaluated for weld penetration, width of the weld, and width of the HAZ. Based on BOP welding studies, parameters were chosen for carrying out butt welding experiments using square butt for 6 mm plates and Y-groove edged configurations for 12 mm thick plates with various root face heights and included angles. The radiography results showed that all the welds were acceptable as per ASME Section III. The welds were also evaluated using hardness tests, metallographic analysis, and tensile, bend, and impact tests.