ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Fermilab center renamed after late particle physicist Helen Edwards
Fermi National Accelerator Laboratory’s Integrated Engineering Research Center, which officially opened in January 2024, is now known as the Helen Edwards Engineering Center. The name was changed to honor the late particle physicist who led the design, construction, commissioning, and operation of the lab’s Tevatron accelerator and was part of the Water Resources Development Act signed by President Biden in December 2024, according to a Fermilab press release.
M. Nakamichi, J. H. Kim
Fusion Science and Technology | Volume 66 | Number 1 | July-August 2014 | Pages 157-162
Technical Paper | doi.org/10.13182/FST13-745
Articles are hosted by Taylor and Francis Online.
Advanced neutron multipliers with low swelling and high stability at high temperatures are desired for the pebble bed blankets of demonstration fusion power (DEMO) reactors. Beryllium intermetallic compounds (beryllides) such as Be12Ti are the most promising material for this purpose. To fabricate the beryllide pebbles, a new granulation process has been established that combines a plasma sintering method for beryllide synthesis and a rotating electrode method using a plasma-sintered electrode for granulation. In trial granulation examinations, prototypic beryllide pebbles 1 mm in diameter were successfully fabricated. This study describes the results of a crush test and the characterization of the oxidation properties of the prototypic beryllide pebbles compared with those of Be pebbles. The crush test revealed that the prototypic beryllide pebble was more brittle than a Be pebble, and its crush load is one-third that of a Be pebble. The oxidation experiment showed that the weight gain ratios of the prototypic beryllide pebbles were significantly smaller than those of pure Be pebbles. The results confirmed that the prototypic beryllide pebbles have better oxidation resistance than pure Be pebbles.