ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Texas-based WCS chosen to manage U.S.-generated mercury
A five-year, $17.8 million contract has been awarded to Waste Control Specialists for the long-term management and storage of elemental mercury, the Department of Energy’s Office of Environmental Management announced on November 21.
Peng Li, Weiping Shen, Shuming Wang, Chulei Zhou, Shiliang Xu
Fusion Science and Technology | Volume 66 | Number 1 | July-August 2014 | Pages 142-149
Technical Paper | doi.org/10.13182/FST13-709
Articles are hosted by Taylor and Francis Online.
This paper presents a W mockup with an interlayer of diamond/Cu (DC) composite material. As a joining interlayer, DC composite material has high thermal conductivity and accommodative coefficient of thermal expansion. By adjusting the thickness of the DC layer and comparing different forms of armor, the optimal design is the brush armor mockup with a 1-mm-thickness DC layer. The thermal-structural behavior of this mockup was analyzed under the steady-state and transient heat flux by using ANSYS Workbench. The calculated temperature and stress indicate that the mockup can tolerate 10 MW/m2 steady-state heat flux at most. Then a transient heat flux (300 MW/m2 for 5 ms) is loaded on the top surface upon steady-state heat flux of 8 MW/m2. The surface temperature instantly rises to 2300°C, but a cracking trend is not shown at the loaded surface.