ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Peng Li, Weiping Shen, Shuming Wang, Chulei Zhou, Shiliang Xu
Fusion Science and Technology | Volume 66 | Number 1 | July-August 2014 | Pages 142-149
Technical Paper | doi.org/10.13182/FST13-709
Articles are hosted by Taylor and Francis Online.
This paper presents a W mockup with an interlayer of diamond/Cu (DC) composite material. As a joining interlayer, DC composite material has high thermal conductivity and accommodative coefficient of thermal expansion. By adjusting the thickness of the DC layer and comparing different forms of armor, the optimal design is the brush armor mockup with a 1-mm-thickness DC layer. The thermal-structural behavior of this mockup was analyzed under the steady-state and transient heat flux by using ANSYS Workbench. The calculated temperature and stress indicate that the mockup can tolerate 10 MW/m2 steady-state heat flux at most. Then a transient heat flux (300 MW/m2 for 5 ms) is loaded on the top surface upon steady-state heat flux of 8 MW/m2. The surface temperature instantly rises to 2300°C, but a cracking trend is not shown at the loaded surface.