ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Peng Li, Weiping Shen, Shuming Wang, Chulei Zhou, Shiliang Xu
Fusion Science and Technology | Volume 66 | Number 1 | July-August 2014 | Pages 142-149
Technical Paper | doi.org/10.13182/FST13-709
Articles are hosted by Taylor and Francis Online.
This paper presents a W mockup with an interlayer of diamond/Cu (DC) composite material. As a joining interlayer, DC composite material has high thermal conductivity and accommodative coefficient of thermal expansion. By adjusting the thickness of the DC layer and comparing different forms of armor, the optimal design is the brush armor mockup with a 1-mm-thickness DC layer. The thermal-structural behavior of this mockup was analyzed under the steady-state and transient heat flux by using ANSYS Workbench. The calculated temperature and stress indicate that the mockup can tolerate 10 MW/m2 steady-state heat flux at most. Then a transient heat flux (300 MW/m2 for 5 ms) is loaded on the top surface upon steady-state heat flux of 8 MW/m2. The surface temperature instantly rises to 2300°C, but a cracking trend is not shown at the loaded surface.