ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Mikhail Tikhonchev, Artem Muralev, Vyacheslav Svetukhin
Fusion Science and Technology | Volume 66 | Number 1 | July-August 2014 | Pages 91-99
Technical Paper | doi.org/10.13182/FST13-721
Articles are hosted by Taylor and Francis Online.
The present paper is devoted to radiation damage simulation of Fe-9at.%Cr binary alloy with twin grain boundaries (GBs) by the molecular dynamics method. Evaluations of specific energy of five GBs and sizes of corresponding GB regions have been obtained for iron and FeCr alloy at temperatures of 0 and 300 K. The binding energies of the vacancy, self-interstitial atom (SIA) and substitutional Cr atom to the GB in pure Fe have been estimated. The results showed that GB regions are energetically preferable for the point defects. Interaction of 10 keV displacement cascades with the GBs has been studied. The tendency to accumulate at the GB region has been shown for produced defects. Some quantitative results which describe features of radiation damage nearby the GB have been obtained. It is revealed that Cr fraction in SIAs inside the GB region is slightly lower than that in the initial alloy matrix. Cr fraction in interstitial configurations outside the GB region is almost three times as high. However, no remarkable chromium redistribution nearby the GB has been detected.