ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Fermilab center renamed after late particle physicist Helen Edwards
Fermi National Accelerator Laboratory’s Integrated Engineering Research Center, which officially opened in January 2024, is now known as the Helen Edwards Engineering Center. The name was changed to honor the late particle physicist who led the design, construction, commissioning, and operation of the lab’s Tevatron accelerator and was part of the Water Resources Development Act signed by President Biden in December 2024, according to a Fermilab press release.
A. B. Putrik, N. S. Klimov, Yu. M. Gasparyan, V. A. Barsuk, V. S. Efimov, V. L. Podkovyrov, A. M. Zhitlukhin, A. D. Yaroshevskaya, D. V. Kovalenko
Fusion Science and Technology | Volume 66 | Number 1 | July-August 2014 | Pages 70-76
Technical Paper | doi.org/10.13182/FST13-748
Articles are hosted by Taylor and Francis Online.
Edge-localized mode (ELM) simulation experiments were held on the quasi-stationary plasma accelerator QSPA-T to study the formation of plasma-facing material (PFM) erosion products. Parameters of the deuterium plasma heat loads in QSPA-T were close to those expected during transient events in ITER. A diagnostic system for measuring the deposition rate of the erosion products with resolution time of 0.02 ms (pulse duration 0.5 ms) was designed. It allowed defining the deposition rate dependence on time and property changes of the deposited film during the pulse. The average deposition rate in QSPA-T under exposures to ultra-short D plasmas was in the range of (0.1 to 100)×1019 at·cm2·s−1, which was much higher than that for stationary processes. It has been found that deuterium concentration in the deposited W films depends on substrate temperature and deposition rate approximately in the same way as for stationary processes. As the substrate temperature and deposition rate increased, the D/W atomic ratio in the W films decreased. For describing the evolution of the D/W ratio with the substrate temperature and the tungsten deposition rate, an empirical equation proposed by De Temmerman and Doerner (J. Nucl. Mater., 2009), but with alternative parameters, has been used.