ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Yoshi Hirooka, Haishan Zhou
Fusion Science and Technology | Volume 66 | Number 1 | July-August 2014 | Pages 63-69
Technical Paper | doi.org/10.13182/FST13-777
Articles are hosted by Taylor and Francis Online.
The first wall of a magnetic fusion DEMO reactor serves to separate the edge plasma from breeding blanket, the latter of which is required to operate at elevated temperatures. To minimize the thermo-mechanical stress, the wall thickness is often limited to be less than 1 cm. As a result, the first wall is subjected to hydrogen isotopes permeation in the two opposite directions via plasma-driven permeation (PDP) by D+ (or D0) and T+ (or T0) in the edge plasma region and via gas-driven permeation (GDP) by T2 bred in the blanket. In the present work, the bi-directional hydrogen permeation behavior through a candidate first wall material, F82H, has been studied, using a laboratory-scale plasma device. Experimental data indicate that GDP tends to dominate the overall hydrogen isotopes transport. The effects of surface roughness and contamination on PDP have been investigated. Also, a one-dimensional diffusion code has been used to simulate bi-directional PDP and GDP under reactor-relevant conditions where multiple hydrogen isotopes flow through the first wall.