ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
State legislation: Colorado redefines nuclear as “clean energy resource”
Colorado Gov. Jared Polis signed a bill into law on Monday that adds nuclear to the state’s clean energy portfolio—making nuclear power eligible for new sources of project financing at the state, county, and city levels.
Pavel Vladimirov, Dmitry Bachurin, Vladimir Borodin, Vladimir Chakin, Maria Ganchenkova, Alexander Fedorov, Michael Klimenkov, Igor Kupriyanov, Anton Moeslang, Masaru Nakamichi, Tamaki Shibayama, Sander Van Til, Milan Zmitko
Fusion Science and Technology | Volume 66 | Number 1 | July-August 2014 | Pages 28-37
Technical Paper | doi.org/10.13182/FST13-776
Articles are hosted by Taylor and Francis Online.
Beryllium is a promising functional material for several breeder system concepts to be tested within the experimental fusion reactor ITER and, later, implemented in the first commercial demonstration fusion power plant DEMO. For these applications its resistance to neutron irradiation and the detrimental effects of radiogenic gases (helium and tritium) is crucial for fusion reactor safety, subsequent waste management and material recycling. A reliable prediction of beryllium behavior under fusion irradiation conditions requires both dedicated experiments and advanced modeling. Characterization of the reference and alternative beryllium pebble grades was performed in terms of their microstructure and tritium release properties. The results are discussed with respect to their application in fusion blanket systems. The outcomes from the HIDOBE-01 post irradiation experiment (PIE) are discussed to highlight several interesting features manifested by beryllium irradiation at fusion relevant temperatures. Titanium beryllide is presently developed as a possible substitute for beryllium pebbles as it shows better oxidation resistance, higher melting temperature and tritium release efficiency. Pebbles consisting predominantly of Be12Ti phase were successfully fabricated at Rokkasho, Japan. Recent advances in modeling provide new insights on the production of point defects and the behavior of helium and hydrogen impurities in beryllium, improving understanding of the mechanisms of primary damage production, hydrogen's effect on the size and the shape of gas bubbles, and tritium removal from the pebbles. The relevance of the experimental and modeling results on irradiated beryllium for the design of a fusion demonstration reactor is evaluated, and recommendations for future R&D programs are proposed.