ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Y. Oya, Y. Makide, K. Chiba, S. Tanaka, Y. Morimoto, H. Kodama, K. Okuno, T. Kawano, Y. Asakura, T. Uda
Fusion Science and Technology | Volume 44 | Number 2 | September 2003 | Pages 359-363
Technical Paper | Fusion Energy - Tritium and Safety and Environment | doi.org/10.13182/FST03-A360
Articles are hosted by Taylor and Francis Online.
To investigate the hydrogen behavior in/on the Stainless Steel (SS)-304, the deuterium or heavy water was sorbed on the sample by various methods, such as water adsorption, ion irradiation and electrolysis, and the chemical states of iron, chromium, nickel and oxygen were studied by means of X-ray photoelectron spectroscopy (XPS). It was found that the metal oxide and oxyhydroxide, FeOOD or CrOOD, were formed on the surface of SS-304. The oxyhydroxide was dominant on the surface of the sample charged by electrolysis. However, metal oxide was observed on the surface of SS-304 after D2O water adsorption. The thermal desorption spectroscopy (TDS) was also applied to the evaluation of the thermal desoprtion behaviors of D2 and D2O from SS-304. It was found that three peaks were found in the sample charged with electrolysis. Among them, two peaks were also observed in the sample with water adsorption. The first peak, which was only found in the sample charged with electrolysis, suggests the D2 and D2O release by the decomposition of oxyhydroxide, and the second peak was induced by the decomposition of hydroxide or aquo-iron complexes. The third deuterium release would be induced by the desorption of the dissociative absorbed deuterium. It was concluded that the existence and chemical form of oxygen influence the retention of deuterium on/in SS-304.