ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Joakim Karlsson, Thomas Elevant
Fusion Science and Technology | Volume 33 | Number 3 | May 1998 | Pages 341-349
Technical Paper | doi.org/10.13182/FST98-A36
Articles are hosted by Taylor and Francis Online.
An heuristic approach has been adopted to obtain empirical scaling formulas for the dependence of neutron emission on predefined machine parameters, such as applied auxiliary heating power, plasma current IP, and toroidal magnetic field BT. The results are intended to be used to predict the neutron emission before each discharge. These formulas are of interest in their own right but more practically can be used as input to control software to pre-set the optimum precollimator apertures for neutron diagnostics such as spectrometers. Formulas have been obtained for data from plasma pulses during the years 1992 and (1994 + 1995), i.e., before and after the divertor installation and major modifications of the Joint European Torus (JET) vessel.Obtained scaling formulas for moderate beam power PNB show neutron emission after installation of the divertor to be lower than before. However, for high beam power, the scaling laws predict as large and even larger neutron emissions for the (1994 + 1995) neutral beam (NB)-heated plasmas as compared to 1992 plasmas. The dependence on radio-frequency (rf) heating power Prf is significantly larger in the scaling laws deduced prior to the divertor phase than after, which implies more efficient heating in 1992. With the exception of combined NB- and rf-heated plasma pulses, the dependence on plasma current has increased moderately after the modifications of JET. For all observations with combined NB and rf heating, the dependence on Prf is quite small, and the neutron production for this category of discharges is dominated by NB heating.A set of scaling laws is found that predicts the neutron emission within a factor of 2, which is consistent with our objective.