ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Joakim Karlsson, Thomas Elevant
Fusion Science and Technology | Volume 33 | Number 3 | May 1998 | Pages 341-349
Technical Paper | doi.org/10.13182/FST98-A36
Articles are hosted by Taylor and Francis Online.
An heuristic approach has been adopted to obtain empirical scaling formulas for the dependence of neutron emission on predefined machine parameters, such as applied auxiliary heating power, plasma current IP, and toroidal magnetic field BT. The results are intended to be used to predict the neutron emission before each discharge. These formulas are of interest in their own right but more practically can be used as input to control software to pre-set the optimum precollimator apertures for neutron diagnostics such as spectrometers. Formulas have been obtained for data from plasma pulses during the years 1992 and (1994 + 1995), i.e., before and after the divertor installation and major modifications of the Joint European Torus (JET) vessel.Obtained scaling formulas for moderate beam power PNB show neutron emission after installation of the divertor to be lower than before. However, for high beam power, the scaling laws predict as large and even larger neutron emissions for the (1994 + 1995) neutral beam (NB)-heated plasmas as compared to 1992 plasmas. The dependence on radio-frequency (rf) heating power Prf is significantly larger in the scaling laws deduced prior to the divertor phase than after, which implies more efficient heating in 1992. With the exception of combined NB- and rf-heated plasma pulses, the dependence on plasma current has increased moderately after the modifications of JET. For all observations with combined NB and rf heating, the dependence on Prf is quite small, and the neutron production for this category of discharges is dominated by NB heating.A set of scaling laws is found that predicts the neutron emission within a factor of 2, which is consistent with our objective.