ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Yuriy Divin and Hitesh Kumar B. Pandya
Fusion Science and Technology | Volume 65 | Number 3 | May 2014 | Pages 399-405
Technical Paper | doi.org/10.13182/FST13-713
Articles are hosted by Taylor and Francis Online.
Electron cyclotron emission (ECE) from hot tokamak plasmas is recognized nowadays as a very informative diagnostic of main plasma parameters. Among several instruments developed to measure ECE, only a Martin-Puplett interferometer operates in a broadband frequency range of ECE from 70 to 1000 GHz. To derive the absolute radiation temperature of the plasma, a total measurement system, including front-end radiation collection, a transmission line, and the interferometer, is calibrated using a hot/cold calibration source. It takes a long time to calibrate the ECE system because of the high values of the noise equivalent power (NEP). A new technique, Hilbert-transform spectral analysis, is proposed for ITER plasma ECE spectral measurements. The operation principle, characteristics, and advantages of the corresponding Hilbert-transform spectrum analyzer (HTSA) based on a high-Tc Josephson detector are described. Because of the lower NEP values of the Josephson detector, this spectrum analyzer might demonstrate shorter calibration times than those for the Martin-Puplett interferometer. Because of a principal difference between Fourier and Hilbert transforms, the HTSA might have an additional advantage in retrieving harmonic ECE radiation from a continuous thermal background.