ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Y. P. Zhang, D. Mazon, Yi Liu, G. L. Yuan, H. B. Xu, B. Lu, X. Y. Song, and Q. W. Yang
Fusion Science and Technology | Volume 65 | Number 3 | May 2014 | Pages 366-371
Technical Paper | doi.org/10.13182/FST13-695
Articles are hosted by Taylor and Francis Online.
A new hard X-ray (HXR) camera system has been planned to be developed for HL-2A tokamak (R0 = 1.65 m, a = 0.4 m, Bt = 2.8 T, and Ip = 0.5 MA), which is dedicated to the tomography of fast electron bremsstrahlung emission in the energy range 10 to 200 keV. The camera system includes two independent HXR cameras, which are both located in the same poloidal plane. Each camera is made up of 30 detection chords and views the whole poloidal cross section of the plasma. The spatial and temporal resolutions of the camera are 2 to 3 cm and 1 to 2 ms, respectively. HXR detection is performed using cadmium telluride (CdTe) semiconductors. Both simulation and experimental results suggest that an Al foil with a 0.3-mm thickness is the best candidate for filtering the low-energy X-ray photons. Powerful inversion techniques are employed to obtain the local HXR profiles as functions of time and photon energy. The HXR camera system planned for HL-2A tokamak is presented in detail.