ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Industry Update—October 2025
Here is a recap of recent industry happenings:
New international partnership to speed Xe-100 SMR deployment
X-energy, Amazon, Korea Hydro & Nuclear Power, and Doosan Enerbility have formed a strategic partnership to accelerate the deployment of X-energy’s Xe-100 small modular reactors and TRISO fuel in the United States to meet the power demands from data centers and AI. The partners will collaborate in reactor engineering design, supply-chain development, construction planning, investment strategies, long-term operations, and global opportunities for joint AI-nuclear deployment. The companies also plan to jointly mobilize as much as $50 billion in public and private investment to support advanced nuclear energy in the U.S.
Nuria Moral, José Manuel Perlado, and Jesús Álvarez
Fusion Science and Technology | Volume 65 | Number 3 | May 2014 | Pages 355-365
Technical Paper | doi.org/10.13182/FST13-686
Articles are hosted by Taylor and Francis Online.
The study of the retention and desorption of hydrogen isotopes and helium atoms in first-wall materials is key for the design of future fusion reactors, not only for the effect of the materials on the degradation of the wall properties but also for the implications in tritium management strategies. A diffusion model of the implanted H, D, T, and He species in a 1-mm-thick first wall of tungsten for the two initial phases of the proposed European laser fusion project HiPER (namely, phases 4a and 4b) has been implemented using the tritium migration analysis program TMAP7. The effects of the abrupt temperature increases, working temperatures, and the operational pulsing modes on the diffusion are studied. Although a detailed treatment of the different trapping mechanisms has been omitted, meaningful quantitative results on the accumulation, desorption, and time intervals to reach a stationary state are presented and discussed.