ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
State legislation: Colorado redefines nuclear as “clean energy resource”
Colorado Gov. Jared Polis signed a bill into law on Monday that adds nuclear to the state’s clean energy portfolio—making nuclear power eligible for new sources of project financing at the state, county, and city levels.
P. N. Maya
Fusion Science and Technology | Volume 65 | Number 2 | March-April 2014 | Pages 325-331
Technical Paper | doi.org/10.13182/FST13-664
Articles are hosted by Taylor and Francis Online.
Molecular dynamics simulations of energetic bombardment of amorphous hydrocarbon (a-C:H) materials by Ar ions up to 200 eV in energy have been performed. In addition to erosion of carbon and hydrogen atoms, the Ar bombardment causes damage and subsequent structural changes in the sample. We present a model based on potential energy analysis to characterize the damage and structural changes. The model identifies both the newly created damage due to bombardment and the local restructuring and subsequent annihilation of already existing damage. The analysis shows that although a large number of carbon atoms are displaced during the collision cascade, most of them do not contribute to the local structural change. Most of the damage creation and restructuring of the local neighborhood happens within the ion range, and, at high energy (200 eV), the restructuring continues beyond the ion range.