ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
World Bank, IAEA partner to fund nuclear energy
The World Bank and the International Atomic Energy Agency signed an agreement last week to cooperate on the construction and financing of advanced nuclear projects in developing countries, marking the first partnership since the bank ended its ban on funding for nuclear energy projects.
A. Shrivastava, M. Makwana, P. Chaudhuri, E. Rajendrakumar
Fusion Science and Technology | Volume 65 | Number 2 | March-April 2014 | Pages 319-324
Technical Paper | doi.org/10.13182/FST13-658
Articles are hosted by Taylor and Francis Online.
In fusion DEMO reactors, the blanket requires lithium-containing ceramics as the tritium breeder material. Lithium metatitanate (Li2TiO3) is being considered as a promising tritium breeding material for thermonuclear fusion reactors because of its reasonable lithium atom density, prominent tritium release rate at low temperatures, low activation characteristics, low thermal expansion coefficient, high thermal conductivity, etc. Li2TiO3 will be used in the Indian Lead-Lithium–Cooled Ceramic Breeder concept to be tested in ITER. Li2TiO3 powder has been synthesized by the solution-combustion technique using a less expensive precursor of titanium, i.e., titanium dioxide (TiO2), at Institute for Plasma Research. Titanium oxynitrate [TiO(NO3)2] and lithium carbonate (Li2CO3) with citric acid fuel are used as the raw materials. The combustion reaction was carried out at citrate-to-metal ratios of 0.8 to 1.5, as well as for various pH values ranging from 1 to 5. Citric acid was used as a fuel material for the reaction. Calcination of the powder was carried out at 600°C. The powders were characterized for phase purity, grain size, and surface area using X-ray diffraction, scanning electron microscopy, and a Brunauer-Emmett-Teller surface area analyzer. Finally, Li2TiO3 pebbles were prepared by extrusion followed by spheronization with a diameter range from 1 to 1.5 mm. The details of the powder systemization, pebble formation, and their various characterizations are discussed in this paper.