ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
A. Shrivastava, M. Makwana, P. Chaudhuri, E. Rajendrakumar
Fusion Science and Technology | Volume 65 | Number 2 | March-April 2014 | Pages 319-324
Technical Paper | doi.org/10.13182/FST13-658
Articles are hosted by Taylor and Francis Online.
In fusion DEMO reactors, the blanket requires lithium-containing ceramics as the tritium breeder material. Lithium metatitanate (Li2TiO3) is being considered as a promising tritium breeding material for thermonuclear fusion reactors because of its reasonable lithium atom density, prominent tritium release rate at low temperatures, low activation characteristics, low thermal expansion coefficient, high thermal conductivity, etc. Li2TiO3 will be used in the Indian Lead-Lithium–Cooled Ceramic Breeder concept to be tested in ITER. Li2TiO3 powder has been synthesized by the solution-combustion technique using a less expensive precursor of titanium, i.e., titanium dioxide (TiO2), at Institute for Plasma Research. Titanium oxynitrate [TiO(NO3)2] and lithium carbonate (Li2CO3) with citric acid fuel are used as the raw materials. The combustion reaction was carried out at citrate-to-metal ratios of 0.8 to 1.5, as well as for various pH values ranging from 1 to 5. Citric acid was used as a fuel material for the reaction. Calcination of the powder was carried out at 600°C. The powders were characterized for phase purity, grain size, and surface area using X-ray diffraction, scanning electron microscopy, and a Brunauer-Emmett-Teller surface area analyzer. Finally, Li2TiO3 pebbles were prepared by extrusion followed by spheronization with a diameter range from 1 to 1.5 mm. The details of the powder systemization, pebble formation, and their various characterizations are discussed in this paper.