ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
L. M. Manocha, Milan M. Vyas, S. Manocha, P. M. Raole
Fusion Science and Technology | Volume 65 | Number 2 | March-April 2014 | Pages 308-318
Technical Paper | doi.org/10.13182/FST13-674
Articles are hosted by Taylor and Francis Online.
Carbon- and silicon carbide (SiC)-based materials, especially in the form of composites, have attracted more attention from reactor technologists than have other ceramics because they better fulfill the prime requirements of reactor materials, such as high-temperature stability and low susceptibility to irradiation and nonbrittle fracture. These composites are fabricated through different routes and may vary in their properties. Therefore, sufficient data need to be generated on the microstructure and mechanical properties of these composites. In the studies reported here, carbon- and SiC-based fibrous ceramic composites were prepared using a liquid-infiltration sol-gel technique with carbon fibers as reinforcement and hybrid sol and pitch as matrix precursors. To some compositions, SiC nanoparticles were added. The composites were heated to 1000°C and 1500°C. The sol-gel route results in an amorphous mixed oxycarbide, silica, and carbon matrix, which on heat treatment at 1500°C is converted to a semicrystalline SiC matrix composite. Scanning electron microscope examination of carbon fiber/carbon and carbon fiber/SiC composites showed good wetting of fibers by matrix resin, forming good bonding at the interface. The carbon fiber/SiC composites with SiC nanoparticles as additional reinforcement showed higher density as well as a 34% increase in flexural strength compared with those without nanoparticles. The addition of just 1 wt% of SiC nanoparticles decreased oxidation by 4 wt%.