ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
State legislation: Colorado redefines nuclear as “clean energy resource”
Colorado Gov. Jared Polis signed a bill into law on Monday that adds nuclear to the state’s clean energy portfolio—making nuclear power eligible for new sources of project financing at the state, county, and city levels.
A. Sarada Sree, E. Rajendra Kumar
Fusion Science and Technology | Volume 65 | Number 2 | March-April 2014 | Pages 282-291
Technical Paper | doi.org/10.13182/FST13-673
Articles are hosted by Taylor and Francis Online.
Hot dip aluminizing was tried on Indian reduced activation ferritic martensitic steel. This experiment was performed with aluminum (Al) melt, with three different silicon (Si) concentrations (3%, 5%, and 7%). Samples were dipped into the Al-Si melt, at 750°C for 30 s, which produced a hard and brittle Fe2Al5 intermetallic layer on the samples. These samples were subjected to two types of heat treatments: (I) 760°C for 30 h and (II) 980°C for 0.5 h, followed by 760°C for 1.5 h to convert the intermetallic layer into more ductile phases. The width of the Fe2Al5 layer was <10 μm for all the samples with different Si concentrations, and for the pure Al melt, it was ∼35 μm. For both the heat treatments, FeAl and α-Fe(Al) layers were observed. Out of the two heat treatments, heat treatment I gives thinner FeAl and α-Fe(Al) layers compared to heat treatment II. X-ray diffraction measurements confirmed the formation of an α-Al2O3 layer on the surface, for 3% and 5% Si concentrations for heat treatment I and for all Si concentrations for heat treatment II. The hardnesses of the Fe2Al5, FeAl, and α-Fe(Al) layers were found to be 972 to 1089 HV (hardness value)/0.01, 324 to 384 HV/0.01, and ∼200 HV/0.01, respectively.