ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
A. Sarada Sree, E. Rajendra Kumar
Fusion Science and Technology | Volume 65 | Number 2 | March-April 2014 | Pages 282-291
Technical Paper | doi.org/10.13182/FST13-673
Articles are hosted by Taylor and Francis Online.
Hot dip aluminizing was tried on Indian reduced activation ferritic martensitic steel. This experiment was performed with aluminum (Al) melt, with three different silicon (Si) concentrations (3%, 5%, and 7%). Samples were dipped into the Al-Si melt, at 750°C for 30 s, which produced a hard and brittle Fe2Al5 intermetallic layer on the samples. These samples were subjected to two types of heat treatments: (I) 760°C for 30 h and (II) 980°C for 0.5 h, followed by 760°C for 1.5 h to convert the intermetallic layer into more ductile phases. The width of the Fe2Al5 layer was <10 μm for all the samples with different Si concentrations, and for the pure Al melt, it was ∼35 μm. For both the heat treatments, FeAl and α-Fe(Al) layers were observed. Out of the two heat treatments, heat treatment I gives thinner FeAl and α-Fe(Al) layers compared to heat treatment II. X-ray diffraction measurements confirmed the formation of an α-Al2O3 layer on the surface, for 3% and 5% Si concentrations for heat treatment I and for all Si concentrations for heat treatment II. The hardnesses of the Fe2Al5, FeAl, and α-Fe(Al) layers were found to be 972 to 1089 HV (hardness value)/0.01, 324 to 384 HV/0.01, and ∼200 HV/0.01, respectively.