ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
A. Choudhary, R. Mazumder, S. Bhattacharyya, P. Chaudhuri
Fusion Science and Technology | Volume 65 | Number 2 | March-April 2014 | Pages 273-281
Technical Paper | doi.org/10.13182/FST13-666
Articles are hosted by Taylor and Francis Online.
Phase-pure lithium orthosilicate (Li4SiO4) was prepared by a solution-combustion technique using rice husk ash as a silica source. We found that by controlling the citrate-to-metal (C/M) ratio of the solution and the calcination temperature of the as-burnt powder, phase purity can be achieved. The particle size of the Li4SiO4 powder (prepared at a C/M ratio of 1.4) was found to be 100 to 200 nm with a low surface area (1.83 m2/g). It was found that Li4SiO4 powder can be sintered at a temperature as low as 900°C with a density of ∼83% of the theoretical density. Phase stability in the sintered sample was studied. Attempts were made to minimize lithium loss from the sintered specimens. The solution-combustion–derived Li4SiO4 fractured pellets showed narrow pore size distributions with pore diameters in the range 0.2 to 10 μm. Thermal diffusivity was measured using a laser flash method. Thermal conductivity values depend on the density of the sample. An impedance spectroscopy method has been used to characterize the electrical properties of the sintered sample as tritium diffusion is related to Li+ ion conductivity in Li4SiO4.