ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
K. Bhanumurthy, W. Krauss, J. Konys
Fusion Science and Technology | Volume 65 | Number 2 | March-April 2014 | Pages 262-272
Technical Paper | doi.org/10.13182/FST13-651
Articles are hosted by Taylor and Francis Online.
The solid-state diffusion reaction between Fe and Al was studied using bulk diffusion couples in the temperature range 450°C to 600°C for annealing durations up to 240 h. The Al-rich intermetallic phase Fe2Al5 formed in the diffusion zone at all annealing temperatures. However, for diffusion couples annealed at and above 600°C, additional intermetallic phases Fe3Al, FeAl, and FeAl2 appeared in the diffusion zone. The existence of these phases at and below 640°C and the composition range of their existence were investigated, and these results provided better insight into the existing Fe-Al phase diagram. It was observed that Fe2Al5 is the dominant phase in the diffusion zone, and the formation of this phase was rationalized based on the modified effective heat of formation model. Both kinetic and diffusion parameters were evaluated for Fe2Al5, and the activation energy for interdiffusion of this phase was found to be 146.8 kJ/mol; these results were compared with previously published work.