ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
T. Dash, B. B. Nayak, M. Abhangi, R. Makwana, S. Vala, S. Jakhar, C. V. S. Rao, T. K. Basu
Fusion Science and Technology | Volume 65 | Number 2 | March-April 2014 | Pages 241-247
Technical Paper | doi.org/10.13182/FST13-663
Articles are hosted by Taylor and Francis Online.
Because of their desirable structural properties, WC, WC+B4C, and WC + TiC are possible materials for use in plasma-facing components of fusion reactors like tokamaks. In this work, seven different compositions of WC-W2C composites have been prepared (30 to 50 at. % C) by an arc plasma melting technique followed by furnace cooling. Efforts have been made to produce a composite that is very hard and tough and that has a high neutron absorbing capacity by adding B4C and TiC (5 to 15 wt% each) to the starting WC powder. Microstructures of the composites were studied by field emission scanning electron microscopy and transmission electron microscopy. Multiphasic structures of the composites exhibited an absence of pores. The WC + TiC and WC + B4C composites showed improvements in microhardness over pure WC. Typical samples of WC-W2C, WC + B4C, and WC + TiC have been characterized by X-ray diffraction, X-ray photoelectron spectroscopy, and Brunauer-Emmett-Teller techniques for analysis and correlation of material properties. When irradiated with 14-MeV D-T neutrons, it was observed that the pure WC melt-cast product exhibited a linear neutron absorption coefficient of 0.172 cm−1. The absorption coefficient was found to be a maximum (0.255 cm−1) for 5 wt% B4C added to WC as against Type 316LN stainless steel, which showed a value of 0.078 cm−1.