ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
T. Dash, B. B. Nayak, M. Abhangi, R. Makwana, S. Vala, S. Jakhar, C. V. S. Rao, T. K. Basu
Fusion Science and Technology | Volume 65 | Number 2 | March-April 2014 | Pages 241-247
Technical Paper | doi.org/10.13182/FST13-663
Articles are hosted by Taylor and Francis Online.
Because of their desirable structural properties, WC, WC+B4C, and WC + TiC are possible materials for use in plasma-facing components of fusion reactors like tokamaks. In this work, seven different compositions of WC-W2C composites have been prepared (30 to 50 at. % C) by an arc plasma melting technique followed by furnace cooling. Efforts have been made to produce a composite that is very hard and tough and that has a high neutron absorbing capacity by adding B4C and TiC (5 to 15 wt% each) to the starting WC powder. Microstructures of the composites were studied by field emission scanning electron microscopy and transmission electron microscopy. Multiphasic structures of the composites exhibited an absence of pores. The WC + TiC and WC + B4C composites showed improvements in microhardness over pure WC. Typical samples of WC-W2C, WC + B4C, and WC + TiC have been characterized by X-ray diffraction, X-ray photoelectron spectroscopy, and Brunauer-Emmett-Teller techniques for analysis and correlation of material properties. When irradiated with 14-MeV D-T neutrons, it was observed that the pure WC melt-cast product exhibited a linear neutron absorption coefficient of 0.172 cm−1. The absorption coefficient was found to be a maximum (0.255 cm−1) for 5 wt% B4C added to WC as against Type 316LN stainless steel, which showed a value of 0.078 cm−1.