ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Texas-based WCS chosen to manage U.S.-generated mercury
A five-year, $17.8 million contract has been awarded to Waste Control Specialists for the long-term management and storage of elemental mercury, the Department of Energy’s Office of Environmental Management announced on November 21.
T. Dash, B. B. Nayak, M. Abhangi, R. Makwana, S. Vala, S. Jakhar, C. V. S. Rao, T. K. Basu
Fusion Science and Technology | Volume 65 | Number 2 | March-April 2014 | Pages 241-247
Technical Paper | doi.org/10.13182/FST13-663
Articles are hosted by Taylor and Francis Online.
Because of their desirable structural properties, WC, WC+B4C, and WC + TiC are possible materials for use in plasma-facing components of fusion reactors like tokamaks. In this work, seven different compositions of WC-W2C composites have been prepared (30 to 50 at. % C) by an arc plasma melting technique followed by furnace cooling. Efforts have been made to produce a composite that is very hard and tough and that has a high neutron absorbing capacity by adding B4C and TiC (5 to 15 wt% each) to the starting WC powder. Microstructures of the composites were studied by field emission scanning electron microscopy and transmission electron microscopy. Multiphasic structures of the composites exhibited an absence of pores. The WC + TiC and WC + B4C composites showed improvements in microhardness over pure WC. Typical samples of WC-W2C, WC + B4C, and WC + TiC have been characterized by X-ray diffraction, X-ray photoelectron spectroscopy, and Brunauer-Emmett-Teller techniques for analysis and correlation of material properties. When irradiated with 14-MeV D-T neutrons, it was observed that the pure WC melt-cast product exhibited a linear neutron absorption coefficient of 0.172 cm−1. The absorption coefficient was found to be a maximum (0.255 cm−1) for 5 wt% B4C added to WC as against Type 316LN stainless steel, which showed a value of 0.078 cm−1.