ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
M. Warrier and M. C. Valsakumar
Fusion Science and Technology | Volume 65 | Number 2 | March-April 2014 | Pages 229-234
Technical Paper | doi.org/10.13182/FST13-657
Articles are hosted by Taylor and Francis Online.
A statistical analysis of collision cascades caused by 1000 randomly directed energetic primary knock-on atoms (PKAs) using molecular dynamics (MD) simulations in crystal Fe(90%)Cr(10%) is presented. An Fe atom is chosen as the PKA in the energy range 0.1 to 5 keV. The standard deviation of the number of Frenkel pairs created during the collision cascade and range of the PKAs is presented. It is shown that the PKAs must be launched in ∼100 randomly chosen directions for the standard deviation to reach a steady value. For PKA energies 1 keV, 35 of secondary recoils have greater displacement than the PKAs. The results from the MD simulations for the number of displaced atoms are compared with those from the Norgett, Robinson, and Torrens model and other MD simulations of cascade damage in FeCr alloys.