ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Texas-based WCS chosen to manage U.S.-generated mercury
A five-year, $17.8 million contract has been awarded to Waste Control Specialists for the long-term management and storage of elemental mercury, the Department of Energy’s Office of Environmental Management announced on November 21.
S. Kumar, C. S. Viswanadham, S. Bhattacharya, S. B. Roy, K. Bhanumurthy, G. K. Dey
Fusion Science and Technology | Volume 65 | Number 2 | March-April 2014 | Pages 199-204
Technical Paper | doi.org/10.13182/FST13-650
Articles are hosted by Taylor and Francis Online.
India is a partner in ITER and plans to test its lead lithium ceramic blanket test blanket module. This component is embedded with a large number of cooling channels of different profiles and, therefore, is a challenging component to fabricate. Cooling channel reconstruction by employing high-power laser welding provides a promising scheme to fabricate this component. Cooling channel reconstruction was demonstrated in American Society for Testing and Materials A387 Gr91 steel using high-power CO2 laser welding. A scheme for fabrication of scale models of different subcomponents, like the first wall (FW) and inner back plate, and assembly of the two subcomponents employing the cooling channel reconstruction scheme was demonstrated. The steady-state temperature field around the weld joint was computed using the welding and heat treatment simulation solution package SYSWELD. These weld joints were characterized for microstructure at different length scales, microhardness, and room-temperature tensile properties. This paper presents the scheme used for cooling channel reconstruction and the results of the weld joint characterization. The scheme for fabrication of the scale model of the FW, the inner back plate, and joining of the two subcomponents using the cooling channel reconstruction approach is also described in this paper.