ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
B. K. Shukla
Fusion Science and Technology | Volume 65 | Number 1 | January 2014 | Pages 145-153
Lecture | doi.org/10.13182/FST13-647
Articles are hosted by Taylor and Francis Online.
The 82.6 GHz/200 kW and 42 GHz/500 kW electron cyclotron resonance heating (ECRH) systems will be used in Tokamak SST-1 to carry out preionization and start-up experiments at 3.0- and 1.5-T operation. The 82.6-GHz gyrotron system has been tested for continuous waves (1000-s duration) using a conventional high-voltage power supply and for pulsed operation (200 kW for 1 s) using a regulated high-voltage power supply. The 42-GHz ECRH system is a pulsed system (500 ms), which will be used to carry out preionization and start-up experiments at 1.5 T (fundamental harmonic) on SST-1 and at 0.75 T (second harmonic) on Tokamak Aditya. The circular corrugated waveguide-based transmission line system contains two waveguide switches: one to test the gyrotron on a dummy load or the tokamak and the second switch to launch the ECRH power, either in SST-1 or in Aditya. The 42-GHz system has been tested on a dummy load, and the gyrotron delivers 500-kW power at beam voltage ∼49 kV and beam current ∼18 A. The output of the gyrotron is Gaussian (TEM00 mode) with mode purity >99%. The system is commissioned on both tokamaks (SST-1 and Aditya) to launch power in any tokamak.