ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
P. K. Sharma
Fusion Science and Technology | Volume 65 | Number 1 | January 2014 | Pages 103-119
Lecture | doi.org/10.13182/FST13-639
Articles are hosted by Taylor and Francis Online.
The lower hybrid current drive (LHCD) system, which is a mature, robust, and reliable heating and current drive system in a large number of tokamaks, is designed, developed, and being commissioned on the steady-state superconducting tokamak (SST-1) for driving 220 kA of plasma current, noninductively, for 1000 s, at nominal plasma parameters (plasma density ∼2×1019 m−3, temperature ∼1 keV, toroidal magnetic field ∼3 T), using four 3.7-GHz, 500-kW continuous wave (cw) klystrons. It employs a conventional grill antenna to launch toroidal lower hybrid waves asymmetrically, with a parallel refractive index N∥ of approximately 2.25 at 90-deg relative phasing of adjacent channels. The system is very complex and requires interfacing with several subsystems such as high-power radio-frequency systems, high-voltage power supply systems, auxiliary power supply systems, efficient thermal management systems, complex networks of transmission line systems, and robust and reliable data acquisition and control systems. With the SST-1 LHCD system as a case study, this lecture gives a broad overview of the physics and design layout of LHCD systems. It addresses cutting-edge technologies employed in realizing the system and gives the present status and advances made for cw operation. The challenges and opportunities are also highlighted.