ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
P. K. Sharma
Fusion Science and Technology | Volume 65 | Number 1 | January 2014 | Pages 103-119
Lecture | doi.org/10.13182/FST13-639
Articles are hosted by Taylor and Francis Online.
The lower hybrid current drive (LHCD) system, which is a mature, robust, and reliable heating and current drive system in a large number of tokamaks, is designed, developed, and being commissioned on the steady-state superconducting tokamak (SST-1) for driving 220 kA of plasma current, noninductively, for 1000 s, at nominal plasma parameters (plasma density ∼2×1019 m−3, temperature ∼1 keV, toroidal magnetic field ∼3 T), using four 3.7-GHz, 500-kW continuous wave (cw) klystrons. It employs a conventional grill antenna to launch toroidal lower hybrid waves asymmetrically, with a parallel refractive index N∥ of approximately 2.25 at 90-deg relative phasing of adjacent channels. The system is very complex and requires interfacing with several subsystems such as high-power radio-frequency systems, high-voltage power supply systems, auxiliary power supply systems, efficient thermal management systems, complex networks of transmission line systems, and robust and reliable data acquisition and control systems. With the SST-1 LHCD system as a case study, this lecture gives a broad overview of the physics and design layout of LHCD systems. It addresses cutting-edge technologies employed in realizing the system and gives the present status and advances made for cw operation. The challenges and opportunities are also highlighted.