ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Texas-based WCS chosen to manage U.S.-generated mercury
A five-year, $17.8 million contract has been awarded to Waste Control Specialists for the long-term management and storage of elemental mercury, the Department of Energy’s Office of Environmental Management announced on November 21.
Y. Peysson and J. Decker
Fusion Science and Technology | Volume 65 | Number 1 | January 2014 | Pages 22-42
Lecture | doi.org/10.13182/FST13-643
Articles are hosted by Taylor and Francis Online.
Radio-frequency (rf) waves are a powerful tool for improving the performance and stability of tokamak plasmas through heating and current drive mechanisms, allowing current density profile control and steady-state operation. From first principles, and taking advantage from the ordering between the various time and space scales, fast and powerful numerical tools have been developed to calculate the rf-driven current. The current drive problem in tokamaks is first introduced with the purpose of maintaining a steady-state self-organized toroidal magnetohydrodynamic equilibrium, such that a minimal amount of the fusion power has to be recycled to control the plasma current. The strict criterion that characterizes a steady-state discharge is derived from the response of the tokamak, considered as a transformer, and of the plasma, when an external source of current is applied. The calculation of a rf-driven source of current requires solving self-consistently a set of equations describing the dynamics of wave fields and charged particles in an inhomogeneous magnetized plasma. The range of applicability of these equations is discussed, as well as numerical methods developed to solve them, such as the ray-tracing code C3PO and the three-dimensional linearized relativistic bounce-averaged electron Fokker-Planck solver LUKE. Simulations of current drive by lower-hybrid waves are presented to illustrate the applications of our numerical tools. Current drive modeling includes the effect of electron density fluctuations at the plasma edge, and the case of electron cyclotron waves used for stabilization of the 3/2 neoclassical tearing modes in ITER is studied in detail. Finally, ongoing developments, including cross effects between momentum and configuration spaces, aiming at improving current drive calculations are discussed.