ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
R. W. Moir, R. H. Bulmer, T. K. Fowler, T. D. Rognlien, M. Z. Youssef
Fusion Science and Technology | Volume 44 | Number 2 | September 2003 | Pages 317-326
Technical Paper | Fusion Energy - Chamber Technology | doi.org/10.13182/FST03-A354
Articles are hosted by Taylor and Francis Online.
A power plant based on a spheromak device using liquid walls is analyzed. We assume a spheromak configuration can be made and sustained by a steady plasma gun current, which injects particles, current and magnetic field, i.e., helicity injection, which are transported into the core region. The magnetic configuration is evaluated with an axisymmetric freeboundary equilibrium code, where the current profile is tailored to support an average beta of 10%. An injection current of 100 kA (125 MW of gun power) sustains the toroidal current of 40 MA. The magnetic flux linking the gun is 1/1000th of the flux in the spheromak. The geometry allows a flow of liquid, either molten salt, (flibe-Li2BeF4 or flinabe-LiNaBeF4), or liquid metal such as SnLi, which protects most of the walls and structures from damage arising from neutrons and plasma particles. The free surface between the liquid and the burning plasma is heated primarily by bremsstrahlung, line radiation, and some by neutrons. The temperature of the free surface of the liquid is calculated and then the evaporation rate is estimated from vapor-pressure data. The impurity concentration in the burning plasma, about 0.8% fluorine, is limited to that giving a 20% reduction in the fusion power. The divertor power density of 620 MW/m2 is handled by high-speed (100 m/s) liquid jets. Calculations show the tritium breeding is adequate with enriched 6Li, and a design is given for the walls not covered by flowing liquid (~15% of the total). We identified a number of problem areas needing further study to make the design more self-consistent and workable, including lowering the divertor power density by expanding the flux tube size.