ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
J. P. Sharpe, B. J. Merrill, D. A. Petti
Fusion Science and Technology | Volume 44 | Number 2 | September 2003 | Pages 312-316
Technical Paper | Fusion Energy - Chamber Technology | doi.org/10.13182/FST03-A353
Articles are hosted by Taylor and Francis Online.
Preliminary studies have been performed to evaluate the production of aerosols in wetted wall and solid wall IFE chamber configurations. Molten lead and flibe were examined for a wetted-wall chamber 6.5 m in radius, giving aerosol mass concentrations of 20 mg/m3 and 10 mg/m3, respectively, for a simulated 458 MJ indirect-drive target microexplosion. Solid wall materials of tungsten and steel exposed to a 154 MJ direct-drive target microexplosion within an equivalent chamber produced mass concentrations of 0.4 mg/m3 and 90 mg/m3, respectively.